24 research outputs found

    Evolutionary Fitness in Variable Environments

    Full text link
    One essential ingredient of evolutionary theory is the concept of fitness as a measure for a species' success in its living conditions. Here, we quantify the effect of environmental fluctuations onto fitness by analytical calculations on a general evolutionary model and by studying corresponding individual-based microscopic models. We demonstrate that not only larger growth rates and viabilities, but also reduced sensitivity to environmental variability substantially increases the fitness. Even for neutral evolution, variability in the growth rates plays the crucial role of strongly reducing the expected fixation times. Thereby, environmental fluctuations constitute a mechanism to account for the effective population sizes inferred from genetic data that often are much smaller than the census population size.Comment: main: 5 pages, 4 figures; supplement: 7 pages, 7 figue

    Evolutionary and Population Dynamics: A Coupled Approach

    Get PDF
    We study the interplay of population growth and evolutionary dynamics using a stochastic model based on birth and death events. In contrast to the common assumption of an independent population size, evolution can be strongly affected by population dynamics in general. Especially for fast reproducing microbes which are subject to selection, both types of dynamics are often closely intertwined. We illustrate this by considering different growth scenarios. Depending on whether microbes die or stop to reproduce (dormancy), qualitatively different behaviors emerge. For cooperating bacteria, a permanent increase of costly cooperation can occur. Even if not permanent, cooperation can still increase transiently due to demographic fluctuations. We validate our analysis via stochastic simulations and analytic calculations. In particular, we derive a condition for an increase in the level of cooperation.Comment: 12 pages, 5 figure

    Microtubule Length-Regulation by Molecular Motors

    Get PDF
    Length-regulation of microtubules (MTs) is essential for many cellular processes. Molecular motors like kinesin 8, which move along MTs and also act as depolymerases, are known as key players in MT dynamics. However, the regulatory mechanisms of length control remain elusive. Here, we investigate a stochastic model accounting for the interplay between polymerization kinetics and motor-induced depolymerization. We determine the dependence of MT length and variance on rate constants and motor concentration. Moreover, our analyses reveal how collective phenomena lead to a well-defined MT length.Comment: 7 pages (5 p. letter, 3 p. supplementary information), 4 figures (3 f. letter, 1 f. supplementary information

    On the role of fluctuations in evolutionary dynamics and transport on microtubules

    Get PDF

    Driven transport on parallel lanes with particle exclusion and obstruction

    Get PDF
    We investigate a driven two-channel system where particles on different lanes mutually obstruct each other's motion, extending an earlier model by Popkov and Peschel Phys. Rev. E 64, 026126 (2001)]. This obstruction may occur in biological contexts due to steric hinderance where motor proteins carry cargos by "walking" on microtubules. Similarly, the model serves as a description for classical spin transport where charged particles with internal states move unidirectionally on a lattice. Three regimes of qualitatively different behavior are identified, depending on the strength of coupling between the lanes. For small and large coupling strengths the model can be mapped to a one-channel problem, whereas a rich phase behavior emerges for intermediate ones. We derive an approximate but quantitatively accurate theoretical description in terms of a one-site cluster approximation, and obtain insight into the phase behavior through the current-density relations combined with an extremal-current principle. Our results are confirmed by stochastic simulations

    T Cells Integrate Local and Global Cues to Discriminate between Structurally Similar Antigens

    Get PDF
    International audienceT lymphocytes' ability to discriminate between structurally related antigens has been attributed to the unique signaling properties of the T cell receptor. However, recent studies have suggested that the output of this discrimination process is conditioned by environmental cues. Here, we demonstrate how the IL-2 cytokine, collectively generated by strongly activated T cell clones, can induce weaker T cell clones to proliferate. We identify the PI3K pathway as being critical for integrating the antigen and cytokine responses and for controlling cell-cycle entry. We build a hybrid stochastic/deterministic computational model that accounts for such signal synergism and demonstrates quantitatively how T cells tune their cell-cycle entry according to environmental cytokine cues. Our findings indicate that antigen discrimination by T cells is not solely an intrinsic cellular property but rather a product of integration of multiple cues, including local cues such as antigen quality and quantity, to global ones like the extracellular concentration of inflammatory cytokines

    Evolutionary game theory in growing populations

    Get PDF
    Existing theoretical models of evolution focus on the relative fitness advantages of different mutants in a population while the dynamic behavior of the population size is mostly left unconsidered. We here present a generic stochastic model which combines the growth dynamics of the population and its internal evolution. Our model thereby accounts for the fact that both evolutionary and growth dynamics are based on individual reproduction events and hence are highly coupled and stochastic in nature. We exemplify our approach by studying the dilemma of cooperation in growing populations and show that genuinely stochastic events can ease the dilemma by leading to a transient but robust increase in cooperationComment: 4 pages, 2 figures and 2 pages supplementary informatio
    corecore